Continuants, Run Lengths, and Barry's Modified Pascal Triangle
نویسندگان
چکیده
منابع مشابه
Run lengths and liquidity
We develop a market-wide illiquidity risk factor based on run lengths and find that it is priced using standard asset-pricing specifications. Our theoretical framework of equity returns derives the result that average run lengths are related to common measures of liquidity such as trading volume and trade price-impact. This relationship holds irrespective of the observation frequency in the com...
متن کاملA Pascal-Type Triangle Characterizing Twin Primes
It is the purpose of this article to present a triangular array of numbers similar to Pascal’s triangle and to prove a corresponding criterion for the twin prime pairs. A further goal is to place all this in the context of some classical orthogonal polynomials and to relate it to some recent work of John D’Angelo. To begin, and for the sake of completeness, we present a short proof of the Pasca...
متن کاملTriangle de Pascal , complexité et automates ∗
À quoi reconnâıt-on qu’une suite est plus ou moins “compliquée” ? Une des traductions mathématiques de ce terme vague consiste à compter les facteurs ou blocs qui apparaissent dans cette suite, (voir par exemple [2]). Il y a naturellement bien d’autres approches possibles, qui dépendent en particulier à la fois des applications qu’on a à l’esprit ... et des quantités que l’on sait calculer ou e...
متن کامل1 Matrices related to the Pascal triangle
for 0 ≤ i, j ∈ N. The matrix P is hence the famous Pascal triangle yielding the binomial coefficients and can be recursively constructed by the rules p0,i = pi,0 = 1 for i ≥ 0 and pi,j = pi−1,j + pi,j−1 for 1 ≤ i, j. In this paper we are interested in (sequences of determinants of finite) matrices related to P . The present section deals with determinants of some minors of the above Pascal tria...
متن کاملFermat Numbers in the Pascal Triangle
For any positive integer m let Fm = 2 2 + 1 be the mth Fermat number. In this short note we show that the only solutions of the diophantine equation Fm = ( n k ) are the trivial ones, i.e., those with k = 1 or n− 1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2019
ISSN: 1077-8926
DOI: 10.37236/7399